# WOOPTIX

# Characterization of wavefront phase sensors by using a piezoelectric deformable mirror with nanometric steps

Ricardo Oliva-García, Miguel Jiménez-Gomis, Carlos Cairós, Juan M. Trujillo-Sevilla, José Manuel Rodríguez-Ramos

### Abstract

Wooptix is developing light-field technologies for advanced imaging solutions which will provide superior measurement technology, also in challenging situations such as the modelling of transparent objects. For this, good knowledge of wavefront structure is required, hence our current work on wavefront sensing.

The characterization process of a Wavefront sensing (WFS) device is not standardized; there are many factors that affect the feasibility of the process.

## Introduction

There are many devices available for estimating the wavefront of an object, as depicted in Figure 1. Each device comes with specifications that assess its suitability for the final use case. However, the process of obtaining these specifications is not well-defined by manufacturers, and the procedure provides details on how to adapt them for various applications.

| 1851                | 1880         | 1970           | 1996       | 2000                | 2016            |
|---------------------|--------------|----------------|------------|---------------------|-----------------|
| FIZEAU              | Hartmann     | Shack-Hartmann | Pyramidal  | Phasics QWLSI       | WFPI            |
| Diffractive grating | Holes matrix | Microlenses    | Apex angle | Diffractive grating | Full resolution |

We propose a well-defined procedure to estimate the behavior of the WFS by using a piezoelectric deformable mirror (DM). Several factors depend on the sensor configuration, such as wavelength, sensitivity, accuracy, precision, and dynamic range. This study demonstrates how to utilize the steps of deformable mirrors to characterize different WFS and estimate the standard deviation of the materials under study, in this case, the DM variability. This approach enables standard users to define the correct WFS for each use case and allows characterizing subsequent elements by understanding the potential deflections caused by the WFS.

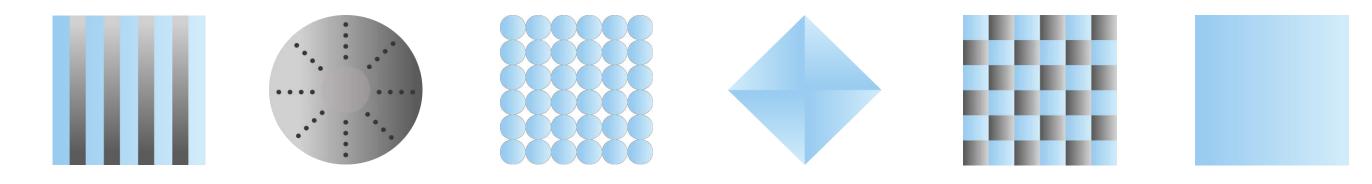
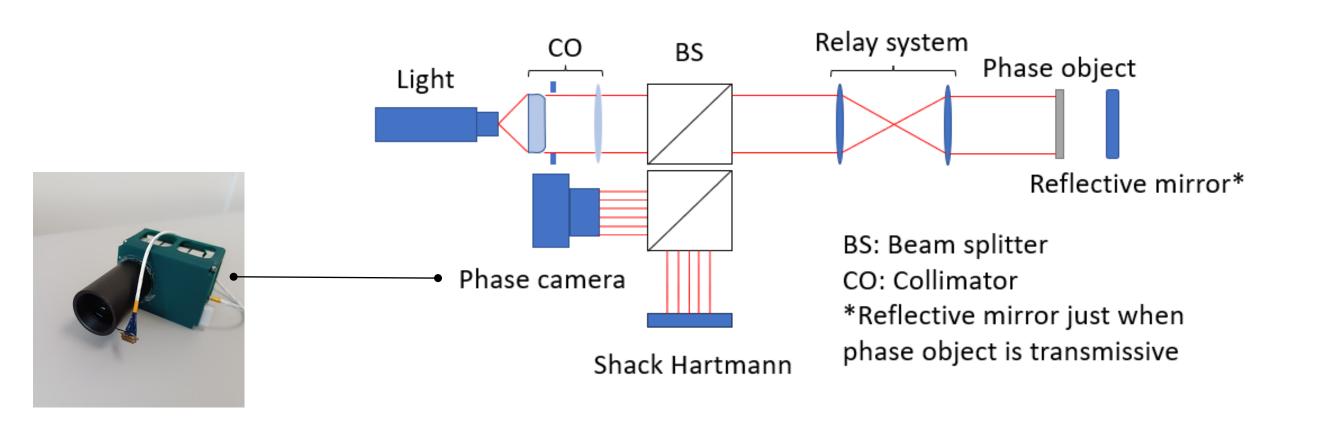
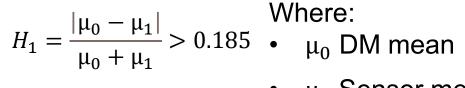




Figure 1. Different WFS types. Some Figures are inspired by [3]

This study outlines a procedure for characterizing a wavefront sensor using a piezoelectric deformable mirror (DM), assessed using two sensors: the Shack-Hartman (SH) sensor [1] and our WFPI sensor [2].

#### Material & methods




#### Figure 2. Experimental setup.

| Parameter | Description |  |
|-----------|-------------|--|
|-----------|-------------|--|

#### **Evaluation metrics:**

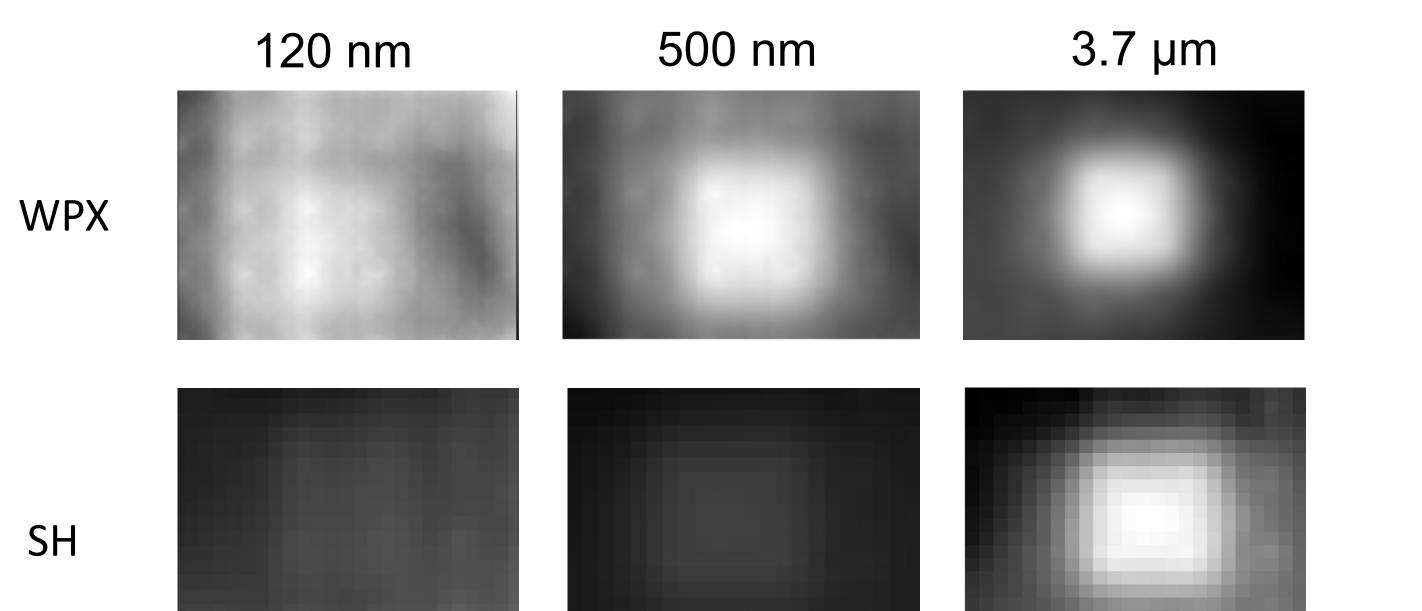
- Peak to Valley
- Root mean square

Assumptions: median difference to determine the minimum stroke, 0.185 is a 5% of error  $H_0 = \frac{|\mu_0 - \mu_1|}{\mu_0 + \mu_1} \le 0.185$ of the DM which is characterized.



•  $\mu_1$  Sensor mean

|                             |                                               | Wavefront Measurement          |                                                              |                       |                     |
|-----------------------------|-----------------------------------------------|--------------------------------|--------------------------------------------------------------|-----------------------|---------------------|
|                             |                                               | Wavefront Accuracy 3)          | λ/30 rms @ 633 nm<br>λ/100 rms @ 633 nm<br>> 100 λ. @ 633 nm |                       | λ/60 rms @ 633 nm   |
|                             |                                               | Wavefront Sensitivity 4)       |                                                              |                       | λ/200 rms @ 633 nm  |
|                             |                                               | Wavefront Dynamic Range 5)     |                                                              |                       | > 50 λ @ 633 nm     |
|                             |                                               | Wavefront Slope 6)             | max. ± 1.0 °                                                 | max. ± 0.8 °          | max. ± 0.5 °        |
|                             |                                               | Local Wavefront Curvature 7)   | > 7.4 mm                                                     | > 10.0 mm             | > 40.0 mm           |
| <br>Fixed zone<br>e.g 1.5um |                                               | Microlenses<br>Microlens Array | MLA150-5C                                                    | MLA150-7AR            | MLA300-14AR         |
| <br>e.g 1.5um               |                                               | Substrate Material             | MILA 100-00                                                  | Fused Silica (Quartz) |                     |
|                             | Dynamic zone                                  | Wavelength Range               | 300 to 1100 nm                                               | 400 to 900 nm         | 400 to 900 nm       |
|                             | start with same height than fixed, increasing | Lenslet Pitch                  | 150                                                          | μm                    | 300 µm              |
|                             | with 5nm steps                                | Lens Diameter                  | 146 µm                                                       |                       | 295 µm <sup>2</sup> |
|                             |                                               | Max. Number of Lenslets        | 47 x                                                         | 35                    | 23 x 17             |
|                             |                                               | Number of Active Lenslets      | Software Selectable<br>Ø 9.0 mm                              |                       |                     |
|                             |                                               | MLA Aperture Size              |                                                              |                       |                     |

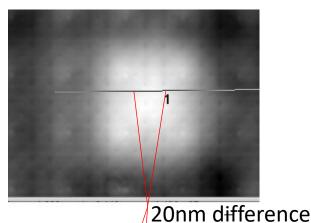

#### Datasheet example

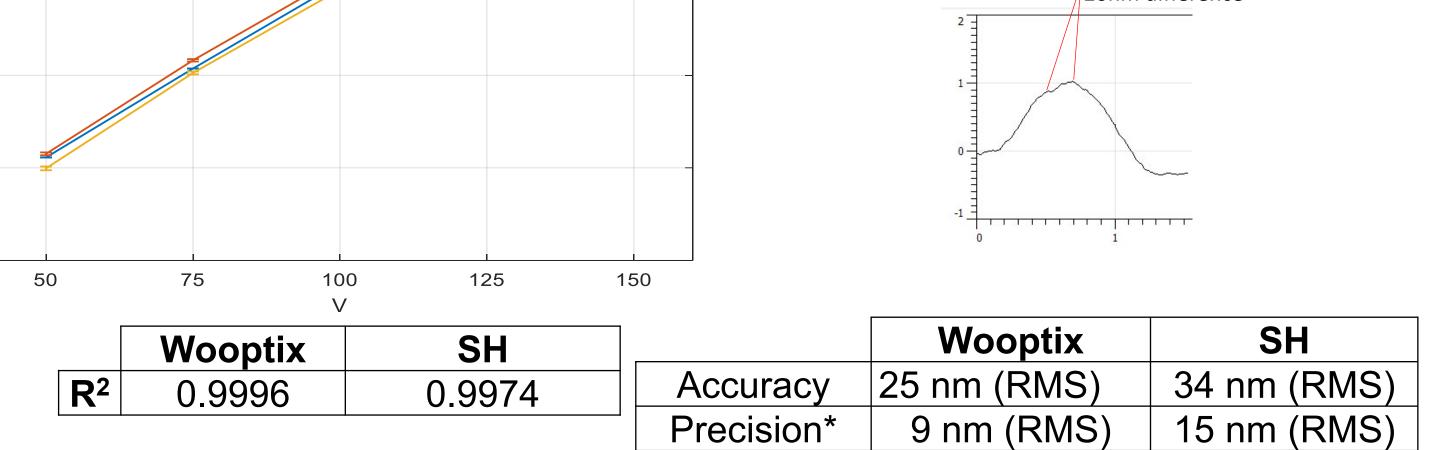
| Wavelenght          | Type of light source to be used                                                |                                                                                                                                                                                                                                                           |
|---------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aperture dimensions | Maximum object size that can be accommodated                                   |                                                                                                                                                                                                                                                           |
| Spatial resolution  | Minimum lateral size detectable                                                |                                                                                                                                                                                                                                                           |
| Sampling            | Number of information points collected                                         |                                                                                                                                                                                                                                                           |
| Accuracy            | Deviation from the real measurement                                            |                                                                                                                                                                                                                                                           |
| Precision           | Variation between multiple measurements                                        |                                                                                                                                                                                                                                                           |
| Dynamic range       | Range of object heights that can be measured                                   |                                                                                                                                                                                                                                                           |
|                     | Aperture dimensions<br>Spatial resolution<br>Sampling<br>Accuracy<br>Precision | Aperture dimensionsMaximum object size that can be accommodatedSpatial resolutionMinimum lateral size detectableSamplingNumber of information points collectedAccuracyDeviation from the real measurementPrecisionVariation between multiple measurements |

The proposed method allows to define all the parameters depicted in the table, using a conventional DM. The hypothesis contrast determines the stroke using an  $\alpha$  of 5%, which is the estimated error.


#### Results

Multiple 2x2 piston heights for each sensors. This experiment allows to characterize the minimum height detectable.





A linearity test detects the adjustment to the manufacturer characterization.

Minimum gap detectable (accuracy) by Wooptix's phase camera.



Accuracy





#### Figure 4. Multiple piston heights with the sensors used in the experiment.

\* Precision test taken under the same conditions with 100 images

### Conclusions

- This study illustrates the testing process for different wavefront sensors, allowing to assess the metrics under consistent conditions.
- To evaluate the sensors adaptability to a range of use cases, is essential to include detailed test specifications within the documentation.
- Both sensors were successfully characterized reaching in the Wooptix camera case a 25 nm accuracy and 9 nm precision, and **34 nm** accuracy and **15 nm** repeatability for the Shack Hartmann sensor.

#### References

1. Hartmann, J. (1904). "Objektivuntersuchungen". Zeitschrift für Instrumentenkunde. Berlin: Verlag von Julius Springer. 24: 1-25, 33-47, 97-117. 2. Oliva-García, R.; Cairós, C.; Trujillo-Sevilla, J.M.; Velasco-Ocaña, M.; Rodríguez-Ramos, J.M. Real-Time Wavefront Sensing at High Resolution with an Electrically Tunable Lens. Sensors 2023, 23, 6651. https://doi.org/10.3390/s23156651 3. https://www.phasics.com





*m* 





BILBAO /SPAIN 2023 info@wooptix.com